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1 langmuir waves

In the last lecture we derived the expression for the plasma frequency by using the
linearized continuity, momentum, and Poisson equations for the electron fluid:
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The resulting oscillations do not provide a full description of the physics going
on under such conditions because the electrons have non-zero velocities and react
differently on their spatial displacement. To account for this we need to the pressure
gradient in the momentum equation, i.e.
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To relate ∇p to δn we need the equation of state. We assume that the electron tempera-
ture remains constant and that the pressure changes adiabatically which gives

∇p = γkTe
∂

∂x
δn,

*sascha.kempf@colorado.edu

1

mailto:sascha.kempf@colorado.edu


L E C T U R E 21 PHYS5150

and, after substituting into the momentum equation
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As before we eliminate δE and δv and find that
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me

∂2

∂x2 δn+ω
2
peδn.

This time we obtained a wave equation and after employing the plane wave ansatz we
get the dispersion relation for Langmuir waves

ω2
e = ω2

pe + k2γev2
th,e

Langmuir waves are oscillations of the electric field propagating to the plasma. Note
that for k= 0 the dispersion relation for Langmuir waves recovers the plasma frequency.
Because k = 2π/λ, plasma oscillations are plasma waves with a very large wavelength.

2 ion acoustic waves

So far we have only considered the high frequency motion of the electrons and ignored
the contribution of the ions. However, at low frequencies the ion motion gets important.
Let’s have a look at the ratio of the electron plasma frequency ωpe and the ion plasma
frequency

ωpi =

(
nZ2

i e2

miε0

)1/2

for a plasma composed of electrons and protons. With ne = ni and Zi = 1 we find that

ωpe

ωpi
=

(
mi

me

)
1/2 ≈ 43.

In this case the electrons can be treated to react on changes of the electric field with
no inertia, i.e

eδE =−γekBTe
∂ lnne

∂x
.

This means that there is a balance between the electron pressure and the electric force.
We now rearrange the equation above for ne

lnne =
1

γekBTe

∫
eδE dx,

and replace δE by ∂(δΦ)/∂x

ne = exp
{

eδΦ
γekBTe

}
.
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After linearizing the electron density

ne0 + δne ≈ n0+≈ n0
eδΦ
γekBTe

+O(δΦ2)

and rearranging the expression we find the response of the electrons to low frequency
ion oscillations

δne

n0
=

eδΦ
γekBTe

.

The continuity and momentum equations for the ion fluid are

∂

∂t
δni =−ni
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∂
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δvi =

e
mi
δE −∇pi.

Because the ions are cold we will drop the pressure term for now and we assume
charge neutrality even in the perturbed densities, i.e. δni = δne = δn. After eliminating
δE and δvi from the set of equations we get

∂2

∂t2 δn−
γekBTe

mi

∂2

∂x2 δn = 0,

which is a wave equation. The corresponding dispersion relation

ω2
ia =

γekBTe

mi
k2

has the characteristics of a sound wave. For this reason low frequency ion waves are
called ion acoustics waves.
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